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1.0 ScoDe — • 

1.1 Item Established 

This specification establishes the performance, design, development 
and test requirement for the secure data communications system prime 
item.  This is a generic specification for use in establishing 
requirements for specific functional specifications for individual 
applications. 

1.2 Approach 

A secure communications system is achieved through the interconnection 
of the elements of a commercial minicomputer system by a Security 
Protection Module (3PM).  The central position of the SPM is shown in 
Figure 1.  This document specifies the required properties of both the 
SPM and the commercial units.  Tne secure communications system shall 
meet the hardware requirements stated in DoD 5200.23-M. 

1.3 Conceptual Environment 

While the Software concepts underlying the design of a security kernel 
are beyond the scope of this document, a brief summary of some central 
notions will facilitate the understanding of this document (ref. 
section 2.0, Schiller). 

A process is defined to consist of a collection of resources and a 
state.  The state of a process includes a single execution point.  A 
resource is available to a process only through a descriptor. 

The resources of a process are subdivided into partitions.  Each 
partition defines a domain.  The single execution point of the process 
may be in any one domain.  The domains of a process are well-ordered 
oased on access privilege.  This domain organization is termed a ring 
structure (ref. section 2.0, Schroeder and Saltzer).  When operating 
within a ring, the process has access to the resources of that ring 
and of all rings of less privilege.  The most privileged ring (ring 
zero, or innermost) will normally contain the security kernel, 
although the kernel may be constructed to occupy more than one ring 
(e.g., zero and one).  Each process operating on a system will contain 
the security kernel (distributed security kernel), so that a switch to 
a security kernel function will occur within a process. 
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Figure 1.  SPM Central Position 



The access privilege of a process is controlled through a comparison 
within the SPM of an effective ring number generated by the SPM during 
address formation and pertinent access control fields contained in the 
descriptor controlling access to the resource.  A definition of the 
access control rules is contained in sections 3.1.2.1.3.1, Memory 
Descriptor, and 3.1.2.3.2, I/O Descriptor.  A specification of how the 
descriptor controlling access is found is contained in sections 
3.1.2.1.1, Address Translation, and 3.1.2.3.1, I/O Naming Structure. 



2.0 Applicable Documents 

It is considered that the Secure Communications Processor will have 
DOD tri-services applicability, and thus the prime governing 
specification for communications with its respective latest revision 
and class will be one of the following: 

MIL-E-4158E 

MIL-E-1640Q 

MIL-E-21200 

MIL-E-5400 

Class 1,2 & 3 

Class 3 & 4 

Class 2 & 3 

Class 1 

General Requirements for Ground 
Electronic Equipment 

General Specification for Electronic 
Equipment, Ship and Shore 

General Specification for Control 
Systems Electronic Test Equipment 

General Specification for Aircraft 
Electronic Equipment 

In addition, the following related disciplinary standards and 
specifications are representative of minimal requirements: 

Military Specifications 

MIL-P-9U42G o Jun 72 

NIL-M-7793D 31 Dec 69 

MIL-E-5087B 15 Oct fa4 

MIL-C-38999C 31 Jan 72 

MIL-C-8872313 21 Dec 73 

MIL-E-8189G 2 Jul 73 

MIL-H-46855A 2 May 72 

Packaging, Handling, and 
Transportability in system/equipment 
acquisition. 

Meter, Time Totalizing 

Bonding, Electrical and Lightning 
Protection for Aerospace Systems 

Connector, Electrical, Circular, 
Miniature;  High density quick 
disconnect 

Connector, Electrical Circular, 
Environment resisting 

Electronic Equipment, Missiles, 
Boosters, Allied Vehicles 

Human Engineering Requirements for 
Military Systems, Equipment and 
Facilities 



MIL-C-1472E   31 Dec 74 

HIL-Standards 

Human Engineering Design Criteria for 
Military Systems, Equipment and 
Facilities 

MIL-STD-186-100 15 Nov 72 

MIL-STD-260A 7 Jul 69 

MIL-STD-4540    31 Aug 73 

MIL-STD-461A 1 Aug 68 

& Chg. LNotice 3  1 May 70 

MIL-STD-462     31 Jul 67 

& Chg. Notice 1  1 May 70 

MIL-STD-883      1 May 68 

MIL-STD-4 7 0 21 Mar 66 

MIL-STD-471A    27 Mar 73 

MIL-5TD-483(USAF) 31 Dec 70 

MIL-STD-490 1 Feb 69 

MIL-STD-756A    15 May 63 

MIL-STD-781B    15 Nov 67 

Common Long Haul and Tactical 
Comm. Sys.  Tech. Std. 

Definitions of It<;m Levels, Item 
Exchangeability, Models and Related 
Te r ms 

Standard, General Requirements for 
Electronic Equipment 

Electromagnetic Interference 
Characteristics, Requirements for 
Equipment 

Electromagnetic Interference 
Characteristics, Measurement of 

Test Methods and Procedures for 
Micro-Electron ics 

Maintainability Program Requirements 
for Sys & Equipments 

Maintainability/Ver ification 
Demonstration/Evaluation 

Configuration management practices 
for systems, equipment, munitions, 
and computer programming. 

Military standard specification 
practices. 

Reliability Prediction 

Reliability Tests, Exponential 
Distribution 



MIL-STD-810B 15 Jun 67 

& Chg Notice 1 20 Oct 69 

MIL-STD-1130 12 Nov 68 

MIL-STD-1472A 15 hay 70 

MIL-STD-1521 1 Sep 72 

i«HL-STD-3100.35G 15 Oct 68 

MIL-Q-9850A     ID Dec 63 

Manuals 

DoD 5 2U0.28 - M  2 Jan 73 

Handbooks 

MIL-HDBK-217B   20 Sep 74 

MIL-HDBK-232(C) 14 Nov 72 

AFSC Design 
Handbook 1-3 

NSA Documents 

NACSEM 5100(C) 

NACSEM 5200(S) 

1 Jan 72 

Get 70 

Environmental Test Methods 

Connections, Electrical Solderless 
Wrapped 

Human Eng. Design Criteria for 
Military 

Technical Reviews and Audits for 
Systems, Equioment and Computer 
Programs Systems, Equipment and 
Facilities 

Integrated Logistics Requirements 
Planning Guide for DoD Systems and 
Equipment 

Quality Program Requirements 

Techniques and procedures for 
implementation, deactivation, 
testing, and evaluation of secure 
resource sharing ADP systems. 

Reliability Stress & Failure Rate 
Data for Electronic Equipment 

DCS Red/Black Engineering and 
Installation Guidelines (U) 

Personnel Subsystems 

Compromising Emanations Laboratory 
Test Standard Electromagnetic (U) 

Compromising Emanations Design 
Handbook (U) 



AF  Corarasec   Publications 

AFNAG-5B   (C) Mar   74 

AFNAG-9A   (C) 14   Apr   72 

Army_ 

DDC AD61966b 

DDC ADbl9667 

QASA 

DASA 2028 

OTHER 

AFR 300-8 

1   Aug   t>4 

1  Aug   64 

3  Jan   74 

DIA-M-50-4A(C)    14   Jan   75 

Schiller, W. L.   Mar 75 

Schroeder, M. D. 
& Saltzer, J. H. 

Mar 72 

Honeywell, AG95    Jun 72 

Red and Black Engineering and 
Installation Criterions 

Using NACSEM Documents and TEMPEST 
Emanation Limits (U) 

Interference Reduction Guide for 
Design Eng Vol. 1 

Interference Reduction Guide for 
Design Eng Vol 2 

Tree Preferred Procedures 

Security Requirements for Automatic 
Data Processing Systems (ADPS) 

Security of Conpartmental Computer 
Operations 

The Design and Specification of a 
Security Kernel for the PDP-11/45, 
MTR-2934, MITRE Corporation, 
Bedford, MA. 

"A Hardware Architecture for 
Implementing Protection Rings", 
Communications of the ACM 15(3), pp, 
157-173. 

The Multics Vir tual Memory 
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3.0 Requirements 

3.1 SPM Definition 

3.1.1  SPM Functional Overview 

The function of an SPM is to mediate, through a descriptor structure, 
all interactions between elements of a protected minicomputer.  The 
logical structure that the introduction of an SPM imposes on the 
protected minicomputer is diagrammed in Figure 2.  An SPM is 
intimately associated (for purposes of SPM control) with each 
processor of the system.  Through its SPM, each processor may 
communicate with the other processors, I/O devices, and memory.  An 
I/O device communicates to memory through an SPM.  Thus, each SPM may 
be thought of as an address translation resource for a number of 
requesters, the requesters being the attached processors and I/O 
devices.  The address translation operation is the conversion of 
virtual addresses presented by the requesters, via the descriptor 
structure, to absolute resource addresses (using information contained 
in the descriptors). 

Each SPM logically contains the mechanism diagrammed in Figure 3.  It 
contains the following functions: 

1) the current protection state (current and effective ring) of each 
requester it services; 

2) a pointer (Descriptor 3ase Root) to the set of descriptors which 
describe the accessible resources for each requester; 

3) a mechanism by which the protection state and set of resource 
descriptors may be initialized for each requester: this mechanism 
is generally under the control of the associated processor; 

4) a mechanism by which the SPM may search through the descriptor 
structure to locate the proper descriptor applying to a requested 
resource; 

5) a mechanism by which the SPM may evaluate the propriety of a 
requested access based on the following information: the identity 
of the requester, the access mode of the request, the resource 
requested, the current protection state of the SPM for the 
requester, and the requester's descriptor for the resource; 

11 
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6) a mechanism by which the protection state of a requester may be 
changed, in a well-defined manner; and 

7) a Fast Access Descriptor Store (FADS) in which the SPM may place 
fast access copies of recently referenced descriptors. 

Tne SPM shall have sufficient protected storage to remember the 
protection state and descriptor set of each of the requesters 
(processors and I/O devices) that it services.  In Figure 3 the number 
of requesters for a specific SPM is designated by n. 

The SPM shall mediate each request by a processor to: 

1) reference memory; and 

2) initiate an I/O operation. 

The SPM shall mediate each request by an I/O device to reference 
memory. 

Most minicomputer systems utilize a bus architecture to transmit 
information between elements of the system.  Thus, for an SPM 
implementation for such systems, the information flows of Figure 2 
will occur on one or more busses. 

The above discussion assumes that each memory request, by an I/O 
device, is actively mediated by the SPM.  Due to performance 
difficulties imposed by the bus architecture of most minicomputers, 
the SPM's active mediation may cause an unacceptable performance loss 
(particularly in high I/O bandwidth applications).  Thus an 
alternative form of I/O mediation is specified in this document.  This 
architecture, termed premapped I/O, imposes substantially more 
responsibility and complexity on the controlling system software. 
Thus its use in secure systems must be carefully considered. 
Premapped I/O mediation imposes a "one-time" check of the propriety of 
an I/O device's memory requests.  This checking, equivalent to the 
dynamic checking discussed above, is performed at I/O initiation time. 
The virtual memory address and extent to or from which the I/O device 
is to transfer data, is transmitted to the SPM which interprets the 
addresses in the descriptor structure of the requesting process. 
These addresses, if valid, are then translated into absolute addresses 
and transmitted to the device.  The device must be guaranteed not to 
modify the addresses passed to it.  The SPM must, guarantee that the 
processor does not modify the set of descriptors used in the 
translation until the completion of the I/O operation.  If an SPM 
supports premapped I/O it shall contain a premapped I/O checker that 
shall validate and translate addresses passed to devices with respect 
to the descriptors of the process initiating the I/O operation. 

14 



3.1.2 SPM Interfaces 

The SPM enforces security through mediation of all communication 
between the non-secure hardware components.  The interfaces are: 

processor to memory 
device to memory 
processor to device 
device to processor 
processor to processor 

3.1.2.1  Processor to Memory Interface 

3.1.2.1.1 Address Translation 

The SPM shall mediate all processor to memory references.  When the 
processor makes a memory reference, the memory address presented on 
the bus is intercepted by the SPM and is treated as a virtual address. 
The SPM translates this virtual address into a physical memory address 
through a series of lookups in descriptor tables resident in memory. 
The physical address is then presented to memory, and the appropriate 
read or write access is made.  The data going to or from memory is not 
examined by the 3PM. 

Each memory descriptor in the descriptor tables contains, among 
various control fields (see section 3.1.2.1.3.1), a pointer to an 
absolute memory location (i.e., a physical memory address).  There are 
several types of descriptors, as designated by particular encodings in 
the descriptor control fields.  If the descriptor is indirect, the 
descriptor's pointer is the address of another descriptor table.  If 
the descriptor is direct, the object described is either an area of 
memory or an I/O device.  If an area of memory, the descriptor's 
pointer is the address of a area (page or segment) of data to be 
referenced.  This section will discuss in detail indirect descriptors 
and direct memory descriptors.  See 3.1.2.3.2 for a discussion of I/O 
descriptors. 

The virtual address presented oy the processor can, in the general 
case, be considered to consist of four fields, designated a,b,c,d, as 
shown at the top of Figure 4.  There are several ways in which a 
virtual address can be translated into a physical address, depending 
on the types of descriptors encountered.  The steps below, as 
illustrated in the figure, describe the procedure by which a virtual 
address shall be translated for the specific case of two levels of 
indirect descriDtors and a third level of direct descriptor. 

15 
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(1) The SPM, given a virtual address, makes its first reference to 
the first level descriptor table pointed to by the descriptor 
base root (DBR) known to the SPM (see 3.1.2.1.3.2 for a 
discussion of the DBR).  It is assumed that the T field of the 
DBR specifies an indirect DBR. 

(2) The offset into this descriptor table is the first field of the 
virtual address (a), and the descriptor at that location is 
referenced. 

(3) If the descriptor is an indirect descriptor, the pointer in that 
descriptor is used to access a second descriptor table, and the 
second part of the virtual address (b) is used as an offset into 
this second table. 

(4) If the second level descriptor is indirect, it similarly is used 
to access a third descriptor table and the third part of the 
virtual address (c) is used to get the third level descriptor. 

(5) The third level descriptor must be a direct descriptor.  Its 
pointer is used to find the page of data, and the last part of 
the virtual address (d) is an offset into the page to obtain the 
actual word being referenced. 

The above steps describe the address translation in the case where the 
DBR is indirect and the descriptors in the first two levels are 
indirect.  If either the first or second level descriptors are direct, 
their respective pointers shall be used to directly access the defined 
area of data, and the unused parts of the virtual address (either 
fields b,c,d or c,d) shall be combined to form the offset into the 
defined area. 

The three-level descriptor system is the most general in that it 
allows for the implementation of segments, pages, and paged descriptor 
segments.  The first descriptor table can be considered to be the page 
table of the descriptor segment, the second table is a page of the 
descriptor segment, and the third table is the page table for the 
segment.  The indirect descriptors in the descriptor segment are 
called segment descriptors and the direct descriptors in the page 
tables are called page descriptors.  The terms segment, page, and 
descriptor segment will be used in this specification to refer to the 
appropriate level descriptors and pages.  It is not the intention, 
however, to preclude some other use or structuring of descriptors. 
The only requirement is that the address translation mechanism perform 
as specified. 

A process's view of memory is that of a series of segments, each 
identified by a segment number (composed of fields a,b combined). 

17 



Within each segment there is a word offset (composed of fields c,d). 
Since each segment may not be the maximum size, there will be "holes" 
in the virtual address space for high values of the word offset (c,d) 
for some segments.  Within a segment, however, all values of the word 
offset from 0 to the current size of the segment are usually defined. 
(The "end" of a segment is the offset corresponding to the last word 
of the last page of the segment as defined by the page table size 
contained in the segment descriptor.  An "undefined" offset in a 
segment that occurs before the end of the segment is one that 
corresponds to a location in that segment for which there is no page 
descriptor in the page table.  A "missing" page descriptor in a page 
taole must be marked by software using the directed trap (DT) field in 
the descriptor, so that the SPM will not attempt to continue address 
translation using the contents of that descriptor.  Though there may 
be little real use for having undefined offsets before the end of a 
segment, this specification does not require all page descriptors in a 
segment to point to valid memory addresses as long as the DT field is 
appropriately marked.) 

Depending on the system software structure, the user can in general 
ignore the fact that segments and descriptor segments are paged. 
Thus, the breakdown of segment number and word offset into separate 
fields is of no concern.  Only the lowest level software, i.e. the 
kernel, need be aware of paging.  It is of course required that the 
kernel be in complete control of all descriptors.. 

In a multiprocessing environment, each process usually has its own 
virtual address space as characterized by its descriptor segment.  In 
such an environment, and particularly in a communications processor 
where many processes have common data bases, it is essential that 
sharing of segments between processes be supported.  When a segment is 
shared oetween processes, there is no inherent requirement that the 
segment have the same segment number for each active process that 
currently has access to the segment.  Thus, the segment number portion 
of a given virtual address only has meaning from within the process 
using the descriptor segment to which the virtual address applies. 
However, the word offset portion of the address of a particular word 
in a segment is the same for every process that accesses the same word 
in the segment.  This means a segment's page table can be shared among 
all processes currently accessing the segment.  In fact, memory 
management in a demand paging environment is greatly simplified if the 
page descriptors (i.e., those that describe the actual physical 
resource) are shared (ref. section 2.0, The Multics Virtual Memory). 
The requirement for sharing of direct descriptors in different virtual 
address spaces is important because it dictates the manner in which 
access control is interpreted (see 3.1.2.1.2). 
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Though the field sizes cannot be exactly specified, there are certain 
restrictions in the relative field sizes that are required to simplify 
interpretation.  For example, the size of the a,b field should be no 
larger than c,d — otherwise it would be very difficult to access the 
descriptor segment itself as a segment.  The decision as to how to 
divide the fields shall be justified with respect to the particular 
application. 

3.1.2.1.2  Access Control 

In addition to performing the function of address translation, the SPM 
shall verify that the process has the required access to the memory 
location referenced.  Access to a memory location is defined to be in 
one of the three modes: read (R), write (W), or execute (E).  Read 
refers to a data or address constant fetch from memory, write is a 
store into memory, and execute is an instruction fetch from memory. 
There is a set of three ring brackets (Rl, R2, R3) that are also used 
to determine the type of access allowed.  The ring brackets restrict 
the process to certain types of access when executing in a given 
domain, or ring.  Each memory descriptor shall be capable of 
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containing the access permission and ring bracket information that is 
to apply to the location referenced.  During the address translation 
phase, the access control information in the appropriate descriptor is 
used to calculate the final effective access mode to the location in 
memory.  The effective mode is compared to the desired access mode, 
and an access violation trap shall be signalled by the SPM if the 
required access is not allowed by the effective mode. 

There are specific cases, however, such as the use of unpaged or 
unshared segments, in which it is convenient to place the access 
control information in direct descriptors.  Thus, in order to support 
full generality, the SPM shall be prepared to accept access control 
information from any descriptor encountered during address 
translation.  The A field in the descriptor shall specify that the 
access control information it contains is to be applied to the memory 
reference.  It is the responsibility of the security kernel to 
properly set the access control bits in each descriptor. 

3.1.2.1.2.1  Effective Ring (JReff) 

The actual effective access to a location in memory shall be 
determined by comparing a calculated effective ring number, Reff, to 
the three ring brackets associated with a descriptor for that memory 
reference, and then factoring in the three access permission bits. 
See 3.1.2.1.3.1 for a description of the exact algorithm used to 
calculate the effective mode. 

For the simple memory reference, the value of Reff used in this 
determination is the current ring number (Rcur) maintained by the SPM. 
More discussion on the use of Rcur can be found in 3.1.2.1.0.  In the 
general case, however, as part of the address preparation cycle, tne 
processor may make one or more memory references to fetch indirect 
addresses (address constants) before operand fetch.  (ThG fetch of an 
address constant from memory is subject to the same access control and 
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address translation as a simple read access to data.)  If an address 
constant is contained in a segment that can be written from a higher 
ring than Rcur, as is the case when an inner ring procedure is 
referencing arguments through an indirect address passed to it from an 
outer ring, the ultimate location referenced by the address constant 
must be subject to access control defined by the ring of the segment 
in which the address constant resides, rather than Rcur.  If the 
address constant were only subject to Rcur restrictions, the inner 
ring procedure would, in software, have to verify that the Bddress 
constant pointed to a segment to which the outer ring had access.  In 
order to eliminate the need for software validation of arguments, the 
5PM shall validate indirect references with respect to the ring of the 
segment in which the address constant resides. 

The SPM shall accomplish the automatic address validation by keeping 
track, in terms of Reff, the maximum value of the ring number Rl in 
all descriptors encountered during address preparation.  The value of 
Reff shall be initialized to Rcur at the beginning of each instruction 
cycle and shall apply to the instruction fetch and all references 
until the next instruction fetch.  For each descriptor encountered 
between instruction fetch and operand fetch, a new value of Reff shall 
be computed as the maximum of the current Reff and Rl in the 
descriptor and this new Reff shall apply to the fetch of subsequent 
indirect addresses or data.  It can be seen from this scheme that Reff 
can only increase from its initial value of Rcur.  In addition, if the 
processor allows more than one level of indirection, subsequent 
indirect address fetches are subject to the constantly increasing 
value of Reff. 

3.1.2.1.2.2  Argument Validation 

One specific problem involving argument validation is solved by the 
use of Reff as discussed in the previous section.  On a system with 
multiple levels of address indirection, the Reff mechanism properly 
checks argument validity as long as the addresses in the indirection 
chain are left in memory segments where they originated.  On 
processors that achieve the addressing effects of multiple indirection 
through the software loading of successive links of an indirect chain 
into internal registers, the loading of each link shall generate an 
indication of the results of the Reff check applied to the entire 
remaining chain. 

A more general problem is that, if the argument pointer is copied from 
an outer ring to the current inner ring, the automatic Raff type of 
validation performed by the SPM has no effect, since now the address 
constant resides in the current ring.  Inner ring procedures must be 
able to copy argument pointers to their own ring] and they must be 
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able to indirect through these pointers without having to check, in 
software, that these pointers will do no harm.  Therefore the SPM 
shall provide a mechanism whereby software running in a given ring can 
force the validation of a reference to an arbitrary virtual address 
with respect to any higher ring number.  Two methods for accomplishing 
this validation are proposed below, though this specification does not 
preclude other implementations that satisfy the argument validation 
requirement. 

The most convenient solution to this problem from the software point 
of view is to store a ring number along with the pointer at the time 
it is copied, which would be the value of Reff computed as if the 
pointer were referenced directly.  On subsequent indirect references 
through this copied pointer, the SPM would use the ring number in the 
pointer as another factor in computing Reff. 
th' 
L! 
a: 
c< 

If there are insufficient unused bits in the indirect address to store 
a ring number, the SPM shall provide, as a minimum, a method whereby a 
given indirect address fetch be subject to an initial software 
specified value of Reff.  For example, software could load the initial 
value of Reff into some register, and two special orders (a load and a 
store) could be recognized by the SPM to perform the normal load and 
store function, but with an initial value of Reff taken from this 
register rather than from Rcur.  This latter approach limits 
programming generality because it requires the subroutine using an 
address to know when an address could possibly have originated in an 
outer ring.  However, any approach allowing software to specify the 
initial Reff for indirect addresses is acceptable. 

3.1.2.1.3  Descriptors 

Every resource that is allocated to a process shall be represented by 
descriptors.  Descriptors are constructed by the security kernel and 
are structured in memory for use by the SPM.  The descriptor structure 
is the prime data base for the state of allocation of the system 
resources.  Copies of descriptors in use in the SPM are only valid if 
they reflect the memory originals.  This section will specify the 
format and semantics of a memory descriptor and a Descriptor 3ase 
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Root.  I/O descriptors are specified in section 3.1.2.3.2, I/O 
Descriptors. 

3.1.2.1.3.1  Memory Descriptor 

The logical format of the memory descriptor recognized by the 3PH is 
diagrammed in Figure 6.  This section specifies the information 
required to be contained in a descriptor.  The intent of this section 
is not to precisely specify a particular implementation.  However, 
every implementation shall provide, in some manner, the required 
descriptor information.  Each piece of required information is 
identified and its purpose and semantics specified. 

Descriptor type: The T field identifies the type of the 
descriptor.  It shall have sufficient size to identify each type 
of descriptor supported by a particular 5PM implementation.  As a 
minimum it shall identify three types of descriptor: an indirect 
descriptor that describes an array of descriptors; a direct 
memory descriptor which directly describes an array of memory 
locations;  and a direct I/O device descriptor which directly 
descrioes an I/O device. 

Directed traps: The DT field of the descriptor provides for 
software directed hardware traps.  At least four ^values of this 
field must be provided.  One value describes a normal descriptor 
that does not cause a trap.  The three other values cause traps. 
It shall be possible for the system to distinguish between page 
not in memory (page fault), missing segment or segment not in 
memory (segment fault), and descriptor segment page fault. 

Access control: Three pieces of information are defined: the A 
field, the Ring Brackets, and Permissions.  The A (Access) field 
determines whether the access control fields of the descriptor 
are to be used to control access to all resources described by 
the descriptor (regardless of the number of subsequent levels of 
address translation).  Two values must be provided: if the A 
field is ON then this descriptor's access control fields apply, 
if OFF, either an inferior or superior descriptor must provide 
the necessary access control.  If more than one descriptor is 
encountered, during address translation, with the A field ON, the 
first descriptor (defining the largest resource) with the A field 
ON defines the appropriate access control.  Of course, at least 
one descriptor with the A field on must be found. 

The Rl, R2, and R3 fields define the privilege rings. Each field 
shall contain at least three values (integers: 0,1,2) so that the 
system supports at least three rings of access privilege.  The 
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interpretation of these fields is described below.  It is the 
responsibility of the software to ensure that Rl<R2<R3. 

The Read, Write, and Execute (R, E, and W) fields define allowed 
nodes of access to the described resource.  Each field must have 
two values (ON and OFF): if ON the respective mode of access is 
allowed, if OFF the respective mode of access shall be denied. 

The following rules specify the required interpretation of the 
above access control information.  The item Reff is the effective 
ring number computed by the 3PM during effective address 
formation (ref. section 3.1.2.1.2.1, Effective Ring). 

1) Write permission if and only if (W = ON) and (Reff < Rl); 

2) For any resource other tnan the resource that is the source 
of the request, read permission if and only if (R = ON) and 
(Reff < R2) (The source of the request is defined as the 
resource to which the program counter points and from whose 
descriptor the access control information, for the current 
access, was obtained, i.e., the descriptor whose A field was 
on.); 

3) For the resource that is the source of the request (e.g., 
address and data constants embedded in procedures): Read 
permission if and only if (R = ON or E = ON) and 
(Reff < R2).  This rule is a desirable extension of rule 2. 
In an Implementation where software considerations do not 
allow the Read (R) bit to be OFF when the Execute  bit (E) 
is ON, this extension may be omitted; 

4) Execute permission if and only if (E = Oi^i)   and 
(Rl < Reff < R2) ; and 

5) The use of R3 and the precise rules for entry/return to/from 
a procedure resource are specified in section 3.1.2.1.6, 
Cross Ring Movement.  In qeneral, Call permission if and 
only if (E = ON) and (Rl < Reff < R3) . 

Certain sequences of ring numbers are termed brackets to denote a 
range of allowed rings in which certain modes of access are 
possible.  The term write bracket shall apply to rings 0 to Rl 
inclusive.  The term read bracket shall apply to rings 0 to R2 
inclusive.  The term execute bracket shall apply to rings Rl to 
R2 inclusive.  The term call bracket shall apply to rings Rl to 
R3 inclusive. 
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Usage: The U, M, and C fields record and linit the usage of the 
described resource.  The U field has two values (ON and OFF): if OFF 
and the resource is successfully accessed (in any mode: read, write, 
or execute) the SPH shall update the value to ON.  The M field has two 
values (ON and OFF): if OFF and the resource is successfully accessed 
in write mode the SPM shall update the value to ON.  The C field 
controls the entry of elements of the described resource into a data 
cache (if such a cache is supported by the system).  It has two values 
(ON and OFF): if ON the described resource may enter the cache, if OFF 
the resource shall not be placed in cache storage.  This field is 
specified to ensure consistent copies of shared read/write resources 
in multiprocessor systems (for example, resources composed of 
descriptors).  This field need not be included if the cache technology 
used in a particular system ensures the consistency of the resource 
with the cache copy in a multiprocessor environment. 

Location: The PA field supplies the physical address of the base (in 
memory) of the resource described.  The PA field shall have sufficient 
size to address all physical memory that the system may support.  The 
PA field shall have sufficient precision to address memory resources 
(particularly small arrays of descriptors) without waste of physical 
address space.  The choice of the size of the PA field shall be 
justified in eacn implementation. 

Limit: The L field defines the size of the defined resource.  An 
access request having an offset greater than the value of the L field 
of any descriptor encountered during address formation shall cause the 
SPM to generate a trap.  The L field shall have sufficient size to 
specify the maximum size of a resource as determined by its offset 
(ref. section 3.1.2.1.1, Address Translation).  The L field shall have 
sufficient precision to specify resource sizes that; do not waste 
physical memory.  The choice of the size of the L field shall be 
justified in each implementation. 

Call limiter: The CL field defines the number of entry points within 
the described resource for use by the call order (ref. section 
3.1.2.1.5, Cross Ring Movements).  The CL field defines the maximum 
offset, within the resource, that may be addressed using a call order. 
A call order addressing an element within the resource with an offset 
greater than the CL field snail cause the SPM to generate a trao.  The 
size of the CL field shall be large enough to define sufficient entry 
points to minimize software interpretation of cross ring transfers 
(call orders).  It is suggested that the CL field allow for at least 
b4 entry points. 

In some implementations software considerations or hardware properties 
may make it desirable to include some other form of the call limiting 
function.  The call limiting function snail always be implemented, and 
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any departure from the inclusion of a call delimiter field in a 
descriptor must be justified. 

Concurrent access: The IOCT field of direct memory descriptors shall 
be incremented by the SPM at each initiation of an I/O operation 
in/out of the described resource.  This field is intended to be used 
by system software to determine the existence of I/O operations in 
progress within a resource.  This information shall then be used, by 
system software, to keep the resource in memory until all outstanding 
I/O has completed. 

If the requested mode of access, for a resource, is not permitted by 
the access control information, the SPM shall generate a trap. 

The interpretation of descriptor fields is dependent on the descriptor 
level (ref. section 3.1.2.1.1, Address Translation).  The T, DT, C, 
PA, and L fields are applicable for each level of descriptor.  The 
IOCT, U, and M fields are referenced and updated only for direct 
descriptors.  The access control fields Rl, R2, R3, R, E, and W are 
only applicable for a descriptor which has the A field Ori. 

3.1.2.1.3.2  Descriptor Base Root 

A special form of descriptor is recognized by the SPM.  This 
descriptor is called the Descriptor Base Root, (DBR) and is diagrammed 
in Figure 7.  It is used by the SPM to establish the set of 
descriptors for a process.  The DBR is a construct similar in format 
to a memory descriptor.  It describes where (in physical memory) and 
how to find the descriptors defining the resources accessible to the 
currently executing process.  The DBR shall describe both the set of 
I/O device descriptors and memory descriptors accessible to a process. 
There are two alternative methods by which the I/O and memory 
descriptors may be structured.  The first structure defines distinct 
name spaces for I/O devices and memory both rooted in a process's DBR. 
A name designated as an I/O device name will be interpreted in the I/O 
device descriptor name space; a name designated as a memory address 
will be interpreted in the memory descriptor name space.  This 
structure requires the DBR to have two components: the first describes 
the set of memory descriptors, the second,describes the set of I/O 
device descriptors.  The second structure interprets both I/O device 
names and memory addresses in the same name space of descriptors.  The 
DBR for this alternative has only one component describing all 
descriptors for both I/O devices and memory.  If the sizes of the 
virtual memory space and the virtual device space (generated by the 
processor) are different, the SPM shall manipulate the smaller virtual 
address so that both memory and device direct descriptors may be 
conveniently accessed.  The interpretation of each component of the 
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DBR  by the 3PM shall be: 

Location: The PA field provides the physical memory address of 
' the tree of descriptors describing the resources of a process. 
It shall have sufficient size to address all of physical memory 
so that descriptors may be placed anywhere in physical memory. 
It shall have sufficient precision to address the smallest 
resource (a single descriptor) without waste of physical memory. 
The choice of the size of the PA.field shall be justified in each 
implementation. 

Limit: The L field defines the size of the described resource. 
It shall have sufficient size to accomodate the maximum number of 
descriptors, determined by the chosen size and interpretation of 
the virtual address (ref. section 3.1.2.1.1, Address 
Translation).  It shall have sufficient precision to accomodate 
the minimum number of descriptors (one) without waste of physical 
memory space.  The choice of the size of the L field shall be 
justified in each implementation. 

Type: The T field defines the type of the DBR.  It has at least 
two values: direct and indirect.  A direct DBR type indicates 
that the DBR describes an array of segment descriptors (ref. 
3".1.2.1.1, Address Translation).  Note that either segment or 
page descriptors may directly describe a resource.  The resource 
described may either be memory (via a direct descriptor) or an 
I/O device (via a device descriptor; ref. 3.1.2.3.2, I/O 
Descriptors). 

If the distinct I/O device and memory descriptor structure is 
implemented, the DBR shall contain two components, each with the above 
format: one component describing the set of I/O device descriptors, 
the other describing the set of memory descriptors.  An indirect DBR 
type indicates that the DBR describes an array of descriptors, each of 
which describes an array of segment descriptors. 

3.1.2.1.4  Descriptor Structure Dynamics 
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descriptor structure in memory are reflected in the fast access 
copies.  The SPM shall provide a function to the processor by which 
outdated copies of descriptors may be cleared from the fast access 
store under kernel software control.  It shall be a hardware 
responsibility to ensure that any changes made, by the SPM, to fast 
access copies of descriptors are promptly and unambiguously reflected 
into the memory originals. 

3.1.2.1.5  Fast Access Descriptor Store (FADS) 

The SPM shall have a fast access store to retain recently used 
descriptors in order to meet and exceed the performance constraints of 
section 3.2.1.1, Relative Performance.  This specification does not 
constrain the specific organization and technology used in an 
implementation of a fast access descriptor store.  However, every 
implementation shall have the following properties: 

1) descriptors in the FADS shall have copies of the access control 
information contained in the descriptor that controls access to 
the resource described by the FADS retained descriptor (e.g., a 
page descriptor in the FADS must contain a copy of the access 
control information obtained from its immediately superior 
segment descriptor) 

2) a Clear Fast Access Store (CFAS) function shall be provided which 
will clear the FADS of descriptors; and 

3) changes made to the descriptors in the FADS by the SPM 
(particularly to the U, M, and IOCT fields) shall be promptly and 
unambiguously reflected into the memory originals. 

3.1.2.1.5  Cross Ring Movements 

The SPM shall maintain a current ring number (Rcur) at which the 
processor is running.  This ring number is used in the calculation of 
the effective ring number (Reff) associated with a particular 
reference to memory that is compared to the ring brackets (Rl, R2, and 
R3) of the referenced segment.  Ring changes are initiated at the 
request of a process using the call and return instructions, or 
automatically by a trap or interrupt.  This section discusses the 
call, return, and trap requirements.  Interrupts are discussed in 
3.1.2.4.1. 
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3.1.2.1.6.1  Call and Return 

Two processor orders that shall be recognized by the SPM are the call 
and return orders.  The call order is very similar to a transfer 
except that the the SPM can change the current ring number to a lower 
value.  The return is also a transfer with a possible increase in the 
current ring number.  Calls are normally used to transfer to inner 
ring procedures to accomplish more privileged operations than those 
allowed at the current ring, and returns are used to return from an 
inner ring procedure back to the outer ring from which the call 
originated. 

Access checking on the operand of the call instruction is somewhat 
different from that of other instructions.  The operand of a normal 
transfer instruction need not be accessed until the next instruction 
fetch cycle, and thus access to the operand may not be required or 
checked until the program counter is loaded with the new virtual 
address generated by the transfer instruction.  Since the call 
instruction can change Rcur to a lower number and thus put the 
processor in a more, privileged state, the SPM must guarantee that 
entry into the inner ring is tightly and completely controlled by that 
inner ring.  This means that the SPM must check that calls can only be 
made to specific locations within specific procedures belonging to the 
inner ring. 

The mechanism that accomplishes this control shall perform as follows. 
an inner ring procedure tnat is callable from an outer ring is defined 
as a "gate" by specifying in the ring orackets of the descriptor for 
the procedure segment a value of R3 tnat is different from R2. 
formally, transfers to a segment cannot be made from rings above R2. 
However, a call instruction is allowed to a procedure if the call is 
made from a ring less than or equal to R3.  If such a call is made, 
the new value of Rcur becomes R2, and execution continues.  The value 
of Reff after address preparation for the call instruction is used in 
the comparison with R2 and R3.  The tests made in the call are as 
follows: 

Reff > R3 •     entry denied, trap (outside call 
bracket) 

R2 < Reff < R3 entry allowed, R2 becomes Rcur 

Rl < Reff < R2 entry allowed, Rcur unchanged 

Reff < Rl entry denied, trap (outside call 
bracket) 
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The checks on call shall not preclude using the call instruction to 
transfer to a procedure from within its execute bracket. Nor shall 
be required that a segment be a gate (i.e., R2 < K3) in order to be 
called from within its execute bracket. Thus, the call bracket is 
defined as Rl to R3, with R2 being the new ring of execution if the 
segment is a gate and the call is from outside R2. 
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In conjunction with being able to obtain the current ring number, the 
3PM shall provide a mechanism whereby a multi-ring gate procedure 
(defined as Rl < R2 < R3) can obtain, upon entry via a call from an 
outer ring, the address of the stack segment for the current ring 
without having to first write into memory.  This is a requirement 
because a multi-ring process must have a separate stack segment for 
each ring, and a gate procedure, upon entry, cannot rely on any 
information as to the location of the stack segment that may have been 
passed to it by the caller.  In the simplest case the stack segment 
number is keyed by convention to the current ring numoer, thereby 
simply requiring that the ring numoer be used to index into a table of 
preset stack pointers.  Note that this requirement only applies to 
multi-ring gates when called from an outer ring.  Procedures that are 
not gates, or gates entered from within the execute bracket, always 
execute in the ring of the caller and can thus believe the value of 
the stack address stored in some register by the caller.  Only when 
the caller is from an outer ring must the stack address be 
independently calculated by the called procedure. 

Another transfer instruction that shall be recognized by the 3PM is 
the return instruction.  The only requirements for return are that the 
returning procedure be able to specify the ring to which to return and 
that returns to inner rings be prohibited.  Otherwise the return 
operates just like the transfer.  Assume that Rto is the ring to which 
the procedure desires to return: 

Reff <   Rto    Rto becomes Rcur 

Reff > Rto    return denied, trap (inward return) 

3.1.2.1.0.2  Trap and Trap Return 

Traps are software initiated events (either intentional or    , 
unintentional) to which the processor responds by saving the current 
state of the processor in such a way that it can later be restored, 
and transferring control to a specified memory location.  In a secure 
system, many traps occurring in a given ring are best handled by 
software executing in that ring.  Some traps, however, such as some of 
those generated by the SPM, are best handled by inner ring software. 
Page faults, for example, must be handled by the kernel since the user 
must not be able to determine whether paging is taking place.  In 
addition, if the data stored during a trap is security sensitive in 
that the user should not be allowed to restore the processor with such 
data upon trap return, the trap (and probably therefore all traps) 
must be handled by the kernel.  An example of the latter can be"found 
in the case where a processor might generate a trap in the middle of 
instruction execution during the formation of an indirect address.  If 
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the trap return sequence supported by the processor allows restarting 
in the middle of the instruction, then part of the information saved 
and restored by software must be the value of Reff.  In such a case 
there must be a mechanism whereby software cannot specify a restored 
value of Reff lower than Rcur of the trap handling procedure.  If the 
SPM can make this check, then the trap may be handled by any ring.  If 
the SPM cannot verify this, then all traps must be handled by the 
kernel and there need oe no facility for handling traps in an 
arbitrary ring.  Tne requirements below assume that the nardware does 
not restore security-sensitive information during a trap return.  If 
the hardware requires that security-sensitive information be restored 
oy software, and the hardware cannot verify this information, then 
there is no requirement tnat traps to an arbitrary ring be allowed 
(i.e., all traps shall be to the security kernel). 

Typically in a processor there is a trap vector that consists of a 
list of entry points for each class of traps. There may also be a 
parallel list of storage areas in which the processor is to ston 

A sample scenario of a trap sequence is as follows.  Assume a trap of 
type S has occurred.  The processor indexes into the trap vector and 
loads the program counter with the entry point specified for trap N. 
It also stores state information in the proper storage area.  Other 
than address translation, the SPM need perform no verification on 
these addresses since they were set up by the kernel.  However, the 
SPM must set a new current ring of execution.  In addition, sufficient 
information must be made available to the trap nandling procedure so 
tnat the exact cause of the trap can be determined and so that the 

A trap is very much like a call, except that the trap handler should 
not be directly callable by the user.  Thus, on a trap, the SPM shall 
set Rcur equal to R2 of the trap handling procedure if the trap 
occurred while in a ring greater than R2.  If the trap occurred from a 
ring less than or equal to R2 the value of Rcur should not change. 
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This allows a given trap handler to work in several rings.  Since the 
trap handler should not be callable directly from an outer ring, no 
check for a valid gate procedure (R2 < R3) shall be made.  Also, the 
call limiter shall not be checked on entry into the trap procedure. 

As stated previously, if the processor requires security-sensitive 
information to be restored upon trap return, then it is sufficient for 
the SPM to force the new value of Rcur to zero, rather than to the 
software specified value R2. 

The kernel can provide a mechanism whereby the user can specify a 
procedure to handle a certain trap, and it is the responsibility of 
the kernel to verify tnat the specified procedure is properly 
accessible to the user before storing the entry point in the trap 
vector.  If the pointer for storage of the state information is 
associated with the trap, the user should also be able to set that 
pointer, subject to kernel validation.  If there is only one storage 
area for all traps, the kernel should provide a facility whereby the 
user's trap handling procedure can examine the state information for 
the trap that occurred. 

The trap return instruction is identical to the return instruction 
except that new state information must be loaded into the processor 
and SPM so that the process can resume operation from the point of the 
trap.  In particular, for SPM traps generated due to access violations 
or the directed trap field (DT) set in a descriptor (e.g., page 
faults) it should be possible for the kernel trap handling procedure 
to set the proper access or change the descriptor causing the trap so 
that execution in the faulting procedure can be resumed as if the 
descriptor were correct in the first place.  Since a trap return may 
possibly occur from a ring outside the kernel, the SPM shall check 
that the new value of Rcur is no less than the current value of Rcur. 

3.1.2.2  Device to Memory Interface 

3.1.2.2.1  I/O Flow 

There are two alternative data paths from device to memory specified. 
Each device attached to a secure data communications processor shall 
use at least one.  The basic difference between the alternatives is 
defined by the nature of the information resident in a DMA device, 
where a Direct Memory Access (DMA) device, once initiated, will 
control a series of data transfers to (from) memory. 

The first type of device to memory mediation, premapped I/O, 
interprets and translates memory addresses at I/O initiation and the 
device subsequently uses absolute addresses.  The alternative, mapped 
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I/O, requires SPM mediation of each memory request by the device.  An 
implementation of the 3PM to handle both types of flow is desirable, 
although nothing herein shall preclude an implementation of the SPM 
that would nandle only one type.  If both types are handled, at I/O 
initiation the SPM shall use information within the I/O device 
describing mechanism (ref. section 3.1.2.3.2, I/O Descriptors) to 
determine which flow is applicable. 

3.1.2.2.1.1  Premapped I/O Flow 
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3.1.2.2.1.2  Mapped I/O Flow 

The address flow for the mapped I/O flow is illustrated in Figure s. 
At mapped I/O initiation the virtual address associated witn the 
transfer is delivered to the SPw, and then is loaded into the device 
as a virtual address.  The address of each item of data transferee 
snail be delivered to the SPM for mapping and checkinq.  Each address 
delivered to the SPM shall be accompanied by the identification of the 
transferring device so that the correct memory descriptor may be 
obtained by the SPM.  The SPM shall retain, for each active I/O 
device, the following information.  (An active I/O device is one for 
which an initiated I/O operation has not yet terminated.) 

1) the effective ring number the device is to operate at; and 

2) some method oy which the SPM may access the memory descriptors of 
the process that initiated the I/O operation.  For example, the 
of, may remember tne DBR contents at the time the I/O operation 
was initiated. 

Eacn access by the device, to memory, is to be mediated by the SPM. 
The access checking performed by the SPM is equivalent to the checking 
performed for memory accesses by a processor.  Each access is 
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evaluated at the effective ring number of the device, in the mode of 
the device (read or write), using the descriptors contained in the 
address space of the process that initiated the I/O operation. 

If the SPH retains descriptors recently used by I/O devices in its 
Fast Access Descriptor Store, the SPM shall provide the capability to 
clear the FADS selectively, by device. 

3.1.2.3  Processor to Device Interface 

3.1.2.3.1  I/O Naming Structure 

The software structure by which a processor names an I/O device will 
vary with the particular processor chosen as the base for a secure 
data communications processor.  The naming structure of a secure data 
communications processor shall have certain properties.  It shall 
allow for a virtual to absolute mapping of the device name on a per 
process basis.  It shall allow for the unique assignment of a device 
to a process.  It shall allow for the unique assignment (and naming) 
of each physical device attached to a multidevice controller. 

Two classes of I/O devices may be supported by a secure data 
communications processor.  The first class are Direct Memory Access 
(DMA) devices.  This class, once initiated by a processor order, 
independently references memory to perform the required data transfer. 
This class of device is the primary object of discussion in the 
following sections.  The second class of device are Programmed I/O 
(PI/0).  These devices do not independently reference memory and 
return information from the device directly to the processor. 
Included in this class are status requests to DMA devices whose 
information may also be routed directly to the requesting processor. 
For this class of device, the SPM need not support a data path from 
device to memory but shall ensure that the requested information is 
returned from the named device to the processor that made the request. 

For both classes of device, the SPM shall require that accesses made 
by processors to devices be mediated through I/O descriptors.  Section 
3.1.2.1.3.2 discussed two alternative means by which I/O descriptors 
may be addressed within the set of descriptors rooted in the D8R.  One 
alternative places I/O descriptors in their own descriptor tree, 
distinct from memory descriptors, rooted in the DBR.  For the other 
alternative, I/O descriptors are embedded in the same descriptor tree 
as memory descriptors, and, in general, may be placed anywhere in the 
descriptor tree that a direct memory descriptor may be placed.  Figure 
10 illustrates the placement of an I/O descriptor at the memory 
segment descriptor level: the device assumes the process local name of 
an entire segment of virtual memory.  Figure 11 illustrates the 
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placement of an I/O descriptor at the memory page descriptor level: 
the device assumes the process local name of the page of a segment of 
virtual memory.  For each of the above examples the diagrams assumes a 
direct DBR.  Of course, every SPM implementation shall also  support 
indirect DBRs (section 3.1.2.1.1 and 3.1.2.1.3.2). 

3.1.2.3.1.1 Explicit Names 

In this structure the processor is aware of explicit I/O names, and 
issues them identified as I/O names.  The SPM uses the descriptor tree 
rooted in the DBR to find an I/O descriptor.  As discussed in sections 
3.1.2.1.3.2 and 3.1.2.3.1, there are two alternative means by which 
explicit names I/O descriptors may be found in the set of descriptors 
rooted in the DBR.  Tne first requires a distinct tree of I/O 
descriptors rooted in the DBR.  The SPM, when presented with an 
address identified as an I/O device name shall search for the I/O 
descriptor within the I/O descriptor tree.  The second structure 
embeds explicit names I/O device descriptors within the memory 
descriptor tree.  For this alternative, the SPM, when presented with 
an address identified as an I/O device name, shall transform the 
presented virtual device name into a virtual memory address and search 
the memory descriptor tree for an explicit name I/O descriptor.  The 
access control information applicable to the I/O descriptor is used to 
check access rights. 

3.1.2.3.1.2  Devices in Memory 

In this structure a process has no explicit names for I/O devices, and 
there may not be specific I/O instructions.  The set of registers that 
control a device is represented oy a range of absolute memory 
addresses.  The SPM will find the direct descriotor defining these 
memory addresses in the memory descriptor tree rooted in the DER.  The 
access control information applicable to this memory descriptor is 
used to control access rights. 

3.1.2.3.2  I/O Descriptor 

The SPM mediates the processor to device interface by treating all 
references by a process to devices as virtual references, and mapping 
them through an I/O describing mechanism.  Two types of I/O 
descriptors are specified: the type supported by a specific 
implementation of this specification will be determined by the form of 
I/O instruction supported oy the processor.  This specification 
assumes that any one minicomputer system will support one or the other 
type of I/O instruction: devices in memory or explicit names.  If a 
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system supports both kinds, the descriptors for each type of device 
shall be distinguished by distinct descriptor type fields (T field). 
Both types of I/O descriptors are direct descriptors: the I/O device 
is directly described.  Indirect descriptors describing an array of 
direct I/O descriptors have precisely the same format as the memory 
descriptors specified in section 3.1.2.1.3.1, Memory Descriptor. 

3.1.2.3.2.1  Explicit Names Descriptor 

In the explicit names structure, I/O descriptors are direct 
descriptors contained in the tree of descriptors rooted in (located 
by) the DBR (Figure 13') .  The SPM shall obtain the appropriate 
descriptor when presented with a virtual device name by the process. 
The logical format of the explicit names I/O descriptor is diagrammed 
in Figure 12.  The descriptor fields are interpreted by the 3PM as: 

Directed traps: The DT field of the descriptor provides for 
software directed traps on access.  At least two values of this 
field must provided, one of which does not cause a trap.  All 
other values of the field cause an SPM generated trap. 

Access control: Three pieces of information are defined: the A 
field, the Ring Brackets, and Permissions.  The A field 
determines whether access control fields of the descriptor are to 
be used to evaluate tne propriety of the access.  Its 
interpretation is identical to that of the corresDonding field in 
the memory descriptor (ref. 3.1.2.1.3.1, Memory Descriptor).  The 
Rl, R2, and R3 fields define rings.  Their definition is 
identical to that of memory descriptors.  Their interpretation 
differs, only for the R3 field, as specified oelow.  The R, w, 
and £ fields define allowed modes of access.  Their definition is 
similar to that of memory descriptors.  The only difference is a 
the interpretation of the E field.  This field, for I/O 
descriptors, shall be undefined except for pertinent control 
operations, e.g. diagnostic operations, microcode 
loading/modification.  The system specific operations shall be 
allowed if and only if (E = ON) and (Reff < R3).  Note that it is 
not required that R3 > R2.  In developing an I/O virtual device 
address, an effective ring number (Reff) is developed by the SPM 
in an identical manner to a memory access.  The following rules 
specify the allowed modes of access to an I/O device: 

1) Read permission (initiate a read from the device) if and 
only if (R = ON) and (Reff < R2); and 

2) Write permission (initiate a write to the device) if and 
only if (W = ON) and (Reff < Rl). 
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Type: The T field identifies the type of the descriptor.  I/O 
descriptors shall be identified by at least one distinct value of 
this field, which identifies a direct device descriptor. 

Usage: The U and M fields shall have an interpretation similar to 
memory descriptors.  For each initiation of an input/output 
operation from/to a device, if the device descriptor's U field is 
OFF, the 3PM shall update it to ON.  These fields shall be 
updated only if there was no access violation.  For each 
initiation of an output operation to a device, if the device 
descriptor's M field is OFF, the 3PM shall update it to ON. 

Mapping type: The' AT  field has two values: ON and OFF.  If MT«ON 
then the described device is a premapped I/O device, if MT*OFF 
then the described device is a mapped I/O device. 

Actual device: The PD identifies the physical device name to be 
used upon access to this descriptor.  This field must have 
sufficient size and precision to accomodate all device narr.es 
addressaole by the processor. 

3.1.2.3.2.2  Devices as Memory Descriptor 

In the devices in memory structure the I/O description mechanism shall 
be a descriptor contained in the tree of memory descriptors rooted in 
the DBR   (ref. Figure 13).  The interpretation of the fields of the 
descriptor will be tne same as the interpretation of the explicit 
names I/O descriptor with the following exceptions: 

Location: The PA field provides the physical address of the oase 
of the set of contiguous memory locations that constitute the 
control registers for the device.  It shall have sufficient size 
and precision to address all device addresses supported by the 
minicomputer system.  This field replaces, for the devices in 
memory type of device, the function of the PD field in the 
explicit names I/O descriptor. 

Limit: The L field limits the number of memory locations which 
constitute the device's control registers.  It shall have 
sufficient size to accomodate the largest set of device control 
registers.  It shall have sufficient precision to accomodate the 
smallest set of device control registers without waste of 
physical address space. 
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3.1.2.3.3  I/O Initiation 

In either I/O naming structure the SPM must be aware that an I/O 
operation is being requested.  In the explicit names structure the SPM 
shall be informed by processor signal.  In the devices in memory 
naming structure the SPM shall conclude that an I/O operation is 
requested by the type of the direct descriptor accessed (the T field 
shall indicate an I/O descriptor).  The SPM shall determine whether 
the device is to be treated as a premapped device or a mapped device 
from an examination of the MT field in the I/O descriptor. 

In either I/O mapping structure, the SPM shall validate and translate 
each access to memory by a device with respect to the descriptors of 
the initiating process.  An I/O operation is defined as a request for 
a transfer to/from memory in which the processor specifies a device, 
the direction (mode: read/write) of the transfer, and a single 
starting address and extent.  Some devices, particularly fast mass 
storage (disks), support chaining of I/O operations.  Under this 
structure, this device reads a list of I/O requests from memory and 
executes them sequentially.  For chained I/O, the addresses used by 
tne device to locate I/O requests dn memory shall also be validated 
and mapped by the SPM.  These devices are perhaps most conveniently 
supported as mapped I/O devices. 

In multiprocessor systems, each processor shall be caoable of 
initiating I/O operations to any configured I/O device. 

3.1.2.3.3.1  Premapped Initiation 

When a device is to be treated as a premapped device, the SPM shall 
ensure the following conditions before permitting the initiation of 
each I/O operation: 

1) that the device has been assigned to the process requesting 
transfer; the assignment is indicated by the presence of a 
descriptor; 

2) that all memory addresses affected by the transfer (starting 
address through starting address plus extent) have the proper 
access permission for the effective ring number and access mode 
of the process requesting the transfer; 

3) that the range of affected memory addresses falls within the 
range of memory described by one direct memory descriptor — 
segment or page; and 
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4) that the descriptor defining the I/O device allows access in the 
requested node at the effective ring number of the process 
requesting the transfer. 

If any of the above checks fail, the SPM shall initiate a trap to the 
requesting processor.  If all of the 3PM checks are successfully 
passed, the SPM shall cause the following actions: 

1) the descriptor for the affected memory addresses is marked (I/O 
count field incremented) to provide notice to the security kernel 
software that an I/O operation using this memory descriptor has 
been initiated; 

2) the descriptor for the I/O device is marked (U and/or M fields) 
to indicate that an I/O operation has been initiated; 

3) the SPM translates the requested virtual memory address and 
extent to a physical address and extent and causes this 
information to oe loaded into the device; and 

4) the SPin allows the requested I/O operation to be initiated. 

Transfer of data will occur directly between the device and memory. 

3.1.2.3.3.2  Mapped Initiation 

When a device is to be treated as a mapped device, the SPtf shall 
ensure: 

1) tnat the device has been assigned to the process requesting the 
transfer — determined by the presence of an appropriate I/O 
descriptor; and 

2) that the descriptor defining the device permits access in the 
requestea mode at the effective ring number of the process 
requesting the transfer. 

If either of these checks fail, the SPM shall initiate a trap to the 
requesting processor.  If all of the checks are successfully passed, 
the SPM shall cause the virtual address to be loaded into the device 
and the requested operation initiated.  The SPM shall remember, for 
each active device, the following information, stored at the time that 
an I/O operation is initiated: 

1) the effective ring number of the process initiating the I/O 
operation; and 
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2) the DBR or the set of memory descriptors, of the requesting 
process, that will be referenced by the device during the I/O 
operation, so that the SPM shall consistently interpret device 
memory requests with respect to the descriptors of the initiating 
process. 

When the virtual address associated with each request by the device 
for data transfer and the device identifier arrive at the 3PM, the 5PM 
shall be able to retrieve the effective ring number previously stored 
and the memory descriptor required by the virtual address.  The memory 
descriptor shall be one of the memory descriptors defined by the 
security kernel for the process requesting the I/O transfer.  The 
checking undertaken by  the SPM, for a device memory reauest, during a 
mapped transfer shall be identical to the checking of a memory access 
by a process running on a processor. 

The SPM (or SPMs in a multiprocessor configuration) shall ensure the 
following conditions on mapped I/O operations. 

1) each device knows which 3PM to use to make requests for memory 
access; 

2) the SPMs shall ensure that there exists only one outstanding I/O 
operation per device — this condition is imposed to guarantee 
that, for any I/O operation, the virtual addresses presented by 
the device are consistently interpreted with respect to the 
descriptor structure of the process that initiated the I/O 
request; and 

3) the SPMs shall ensure that fast access copies of descriptors 
retained for use by active mapped devices accurately reflect the 
memory originals of the process requesting the I/O operation in 
progress on the device.  The SPMs shall provide sufficient 
mechanism to invalidate copies of descriptors retained for the 
use of devices if the original process descriptors are altered by 
the kernel. 

3.1.2.4  Device to Processor Interface 

The only device to processor interface is the signalling of interrupts 
by a device.  In the discussion below, the term "device" will be used 
to refer to not only I/O devices, but devices such as timers that can 
interrupt a processor. 
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3.1.2.4.1 Interrupt Structure 

When an I/O device signals an interrupt, that signal shall be directed 
to the processor with which the device is currently associated.  This 
association may be determined at the time of initiation of the I/O 
order, or fixed in hardware.  For processor-local devices, such as 
interval timers, this association may be fixed in hardware. 

The processor snail have the ability to allow the interrupt handler to 
determine the cause of the interrupt, and all information stored by or 
in the SPrt at initiation of the last I/O order on that device shall be 
available to software at interrupt time.  In addition, the state of 
the processor at interrupt shall be made available so that it can 
later oe restored on return from interrupt. 

Since, on return from interrupt, it is required that the interrupted 
procedure continue to execute as if no interrupt had occurred, the 
specific points in the instruction cycle and descriptor fetch during 
which interrupt can occur must be well defined with respect to the 
SPM.  Another processor requirement is that the security kernel, at 
its discretion, have the capability of delaying any interrupts for 
certain periods of time. # The delaying of interrupts must be a 
privileged operation as defined in section 3.7.2. 

3.1.2.4.2 Interrupt Storage and Entry 

The sequence of events occurring at interrupt time are exactly the 
same as for traps, though the amount and type of information saved at 
interrupt might be different depending on the requirements of the 
processor.  Upon recognition of an interrupt, the processor makes 
references to an interrupt vector of entry points and possible storage 
areas and the SPri shall set a new value of Rcur depending on the ring 
brackets of the entry location.  It is the responsibility of the 
security kernel to set tne interrupt vectors properly.  As for traps, 
specification of the interrupt vector location must be a privileged 
operation if allowed by the processor. 

3.1.2.5  Processor to Processor Interface 

3.1.2.5.1  Maintenance of Descriptor Structure 

In a system configured with multiple processors each processor will 
work with its own 3PM.  Changes to the descriptor structure will be 
made by the security kernel software, and in certain limited cases by 
3PMS. 
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The processors shall use a system wide semaphore to coordinate 
operations on descriptors.  The processors shall have a Clear Fast 
Access Store (CFAS) function.  The CFAS function shall be capable of • 
directing any configured 3PM (initiated from any processor) to clear 
all or some of its fast access descriptor store.  The CFAS function 
shall incorporate a response mechanism to inform the processor of the 
completion of the order by an SPM.  The CFAS function shall 
incorporate the ability to clear by descriptor type (the T field).  If 
mapped I/O is implemented the CFAS function shall have the ability to 
clear an SPM by specific device name. 

SPMs will modify the 13,   M, and IOCT fields of memory descriptors. 
Logically, an SPM must' seize and release the system wide "changing 
descriptor" semaphore, with a trap generated on failure to seize.  An 
indivisible memory Kead-Alter-Rewrite function for setting U or M or 
incrementing IOCT is highly desirable. 

The processors shall provide indivisible memory test-and-set 
instructions to coordinate processor access to shared memory. 

3.1.2.5.2  General Inter processor Signa'lling 

Each processor shall have the capability to signal any processor in 
tne system.  The signal function shall invoke the system interrupt 
structure, causing the receiving processor to execute the software 
defined interrupt routine. 

3.1.2.to  Operator to Processor Interface 

The reguirements for the interaction of an operator with a secure data 
communications processor are beyond the scope of this document.  It is 
anticipated that this interaction will be defined and controlled by 
the security kernel.  The secure data communications processor shall 
have the ability to allow some portion of the security kernel to be 
bootstrapped. 

3.1.2.6.1 Standalone Bootstrap 

when the secure data communications processor is to be operated in a 
standalone environment, some I/O device shall be controlled by the 
system operator to effect an initial memory load.  In Figure 14 is 
shown the contents of memory following tne initial memory load.  This 
figure is meant to be illustrative, and is not intended to preclude 
other designs of the bootstrap mechanism.  In this example, the SPM is 
addressed as an I/O device using I/O descriptors.  In Figure 14 a DBR, 
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two I/O descriptors, two memory descriptors and a procedure segment 
have been loaded.  The DBR establishes the trees of I/O (2) 
descriptors and memory (2) descriptors.  The first I/O descriptor 
establishes the SPM as an I/O device, the second establishes the 
device for further memory loading.  The first memory descriptor 
establishes the loaded procedure, the second establishes a memory area 
for further I/O input.  It is assumed that the processor Program 
Counter can be set to extract the first order of the procedure 
segment.  The DBR is initialized either externally or by convention, 
by the bootload function, to a predefined value.  The current ring is 
initialized to be zero.  The contents of the- Program Counter is 
assumed to be a virtual address and the corresponding instruction is 
fetched from memory using the initial DBR and memory descriptors. 
Processing continues in ring zero (until explicitly changed by 
software) with all addresses interpreted as virtual addresses. 

3.1.2.6.2  Front End Bootstrap 

When the secure data communications processor is used as a front end 
for some host processor, it shall have the ability to be bootstrapped 
from the host processor.  Within the illustrative protocol of Figure 
14, the initial memory load would be performed by "the host processor 
through an interconnecting unit. 

3.1.3  Major Component List 

The secure data communications system is composed of the following 
components: 

1. 5 PM 

2. Processor 

3. Memory Units 

4. Controllers 

In applications where the secure data communications system is acting 
as a front end for a host processor, an Interconnecting Unit will be 
required (ref. section 10.1). 
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3.1.4 Government Furnished Property List 

As specified by procuring agency 

3.1.5 Government Loaned Property List 

As specified by procuring agency 

3.2 Characteristics 

As secure data communications processors are intended for use over a 
variety of applications and in a variety of environments, there is no 
one set of characteristics that will be universally desirable.  It is 
anticipated that each procurement for a secure data communications 
processor will refer to the architectural requirements specified 
herein and to a specification of the precise characteristics required 
for the intended application.  Reference to a particular specification 
established for a particular application is denoted herein by the 
phrase "per individual specification". 

3.2.1  Performance 

3.2.1.1 Relative Performance 

The performance of a secure system incorporating the SPM is denendent 
on the implementation of the SPM and its method of connection to the 
nonsecure components.  Performance for a secure system can be roughly 
estimated relative to a similar but nonsecured system.  For a secure 
minicomputer system, conforming to this specification, the performance 
degradation introduced by the SPM, relative to an equivalent unsecured 
system, shall not exceed 25%. 

3.2.1.2 Data Cache 

A data cache is one method (among many) to increase the processor 
performance of a system.  It is not the intent of this document to 
require the incorporation of a data cache in the SPM.  In the event 
that a system implementation includes a data cache in the SPM, certain 
cnaracteristics are required.  The C field is in the memory 
descriptors to allow tne software to instruct the SPM to keep data out 
of the data cache.  This facility must be provided in order to ensure 
the consistency of the descriptor structure in the fast access 
descriptor store, data cache, and memory when descriptors are 
manipulated (by security kernel software) as data.  This is most 

55 



easily ensured by the restriction that the areas of memory containing 
descriptors not be placed in a data cache.  Data cache must be 
responsive to the CFAS function in clearing any data or physical 
address information associated with a cleared descriptor. 

The above requirement does not preclude cache implementations in which 
the consistency of shared read/write data areas (particularly if 
composed of descriptors, and most emphatically in multiprocessor 
systems) is ensured by mechanisms other than not placing descriptors 
in tne data cache. 

3.2.2  Physical Characteristics 

To reduce cost, "off-the-shelf" commercial grade equipment is utilized 
to a maximum extent.  However, due to the criticality of 
communications systems in many DoD strategic and tactical 
applications, coupled with the need for sparing, repairing and 
replacing attritioned equipment, additional requirements will be 
imposed which require modifications to commercial equipment or in some 
cases new designs.  More stringent requirements are necessary in the 
following areas: 

A. Availability - Redundant systems (without single-point failures) 
with bit correction and low mean times to repair (MTTRs) and 
roll-back and recovery capability may be required to meet on-line 
availability requirements. 

B. Reliability - More stringent carts selection, control, screening 
and system/subsystem burn-in may De required. 

C. RFI Compatioility - More stringent requirements may be imposed to 
mitigate jamming and upset. 

D. Tempest - Control of compromising emanations is required. 

E. Radiation Survivability and Vulnerability - For certain strategic 
applications, EMP and nuclear emissions survivability is 
required. 

F. Configuration Control - Suitable identification control and 
accounting procedures will be required for critical-item 
provisioning. 

In general, the quality level of equipment suitable for digital 
communications applications fall into three broad categories: 
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A. Ruggedized commercial equipment (MIL-E-415cs (-1) ) 

B. MIL spec commercial compatible equipment (MIL-E-4l5d(-1), 
MIL-£-1640G(4) , MIL-E-5400, curve II and III) 

C. Sophisticated ad-hoc designs (MIL-E-5400, curve IV, MIL-£-elbb>) 

Category A equipments are suitaole for most ground fixed-site 
applications, Category B equipments are required for most mobile 
applications and Category C equipments are required for space and/or 
"high-rel" applications. 

Packaging - Taole top, self contained and/or rack nountable (li):l) 
conf igurations. 

.sir Cooling - ambient air (dowers may be utilized subject to noise 
constraints) 

Size - per individual specification 

weight - per individual specification 

Power - per individual specification 

Mounting and Access - per individual specification for ease of 
maintenance and repair. 

3.2.3  Reliability 

The probability of failure, per hour of operation, shall be less the 
u.uuuu5/hr for the Security Protection Module alone, and less than the 
following figures for units of the system which it is to protect, 
except as may be relaxed for particular installations. 

Processor: <o.00UQ5/hr 

Memory Unit 
(12dK bytes): <u.uu0u4/hr 

Controllers: < .UU004/hr 

Tne SPM design shall be such that the probability that a hardware 
component failure may cause a security breach may be reliably 
considered to be less than u. uuuuul/hour of operation. 

Reliability Plan - per individual specification 
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Quality Control - per individual specification 

Service Life - per individual specification 

Specified MTBF - per individual specification 

3.2.4 Maintainability 

The   following  maintainability   features   are   required: 

Self-Test 

A manually activated self-test feature shall be provided, to be 
used as a means of detecting traps, exercising the equipment 
during troubleshooting, verifying proper performance, and 
performing self-test.  Status-indicating capabilities shall oe 
included.  This feature shall be self-contained. 

Mean-Time to Repair - per individual specification 

Organizational Level Maintenance - per individual specification 

Intermediate Level Maintenance - per individual specification 

3.2.5 Environmental Conditions 

Vibration 

Operating:  per individual specification 

Non-Operating:  (Requirements are for transportation, ergo 
transportation cases and shock mounts may be utilized). 

Land Carriers:  1.5 g's      5-500 Hz 
Air Carriers:   1.5 g's     17-28  Hz 

3.5 g's     44-500 Hz 

Shock 

Operating:  per individual specification 

Non-Operating: 

(a) Bench drop tests 
(D) 20 g's peak, 16 milliseconds 
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Temperature 

Operating:  Ambient air from 5U DT to 100 DT (lu C - 3o C) 

Altitude/Pressure 

won-Operating:  Sea level to 35,1)00 feet 

Operating:  per individual specification 

Humidity 

Operating:  b% to 95% 

Transportability 

The system hardware shall be designed and constructed to 
withstand military and commercial transport via air, rail and 
truck to installation sites without degradation of the equipment 
performance. 

3.3  Design and Construction 

The equipment shall be designed and constructed to meet the general 
design requirements of the prime governing specifications and the 
general requirements for electronic equioment as specified in 
MIL-STO-454D. 

3.3.1 Materials Processes and Parts 

Materials, processes and parts for use in the manufacture of the 
equipment shall be in accordance witn the prime governing 
specification and MIL-3TD-4540, Requirement 4.  Parts shall be in 
accordance with MIL-STD-454, Requirement 64. 

3.3.2 Compromising Emanations Control (TEMPEST) and Electromagnetic 
Compatioility 

Because system equipment will be connected to communications lines and 
controllers of various security levels and need-to-know categories, 
all system equipment shall be designed to reduce compromising 
emanations below the applicable radiation and conduction limits of 
NACSEM 510u as modified oy AFNAG-9A unless otherwise specified.  All 
TEMPEST design shall follow the principles outlined in NACSEM 52u0. 
Installation of system equipment shall conform to the applicable 
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requirements of AFNAG-5B.  Red/black separation requirements are 
described in iviIL-HOBK-232. 

Electromagnetic interference criteria shall be in accordance with the 
emission and susceptibility requirements established by 
MIL-STD-461A(Notice3).  The interference reduction guide for Design 
Engineers, DDC AD6l966b and AD6196b7 shall be used to establish 
bonding and shielding criteria and to optimize interference 
suppression circuits. 

3.3.3 iMameplates and Product Harking 

The identification nomenclature marking and labeling for the several 
elements of the system shall be provided in accordance with 
i"IIL-E-415bE., paragraph 3.6. 

3.3.4 Workmanship 

All units, component parts, and accessories supplied.shall be in 
accordance with MIL-STD-454D, Requirement 9. 

3.3.5 Interchangeability 

All units shall oe designed and constructed in accordance with the 
provisions of MIL-STC-454D, Requirement 7, concerning the use and 
selection of interchangeability items, and with the definitions 
contained in MIL-3TD-2aOA.  Like units, assemblies, subassemblies, and 
replaceaDle parts shall be physically and functionally 
interchangeable, without modifications of such items or the equipment. 
Module replacement shall be possible without removal of adjacent 
modules.  Software modules shall be intercnangeable among like 
prbcessors. 

3.3.6 System Safety 

System safety engineering principles shall be applied throughout the 
design, development manufacture, test, checkout, operation and 
maintenance of all systems/equipment in accordance with MIL-STD-454D, 
Requirement 1 and a (class 1 equipment). 
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3.3.7  Hunan Engineering 

human engineering design criteria and principles shall be applied in 
accordance with MIL-H-46655A, MIL-STD-1472, and AFSC Design Handbook 
1-3 in the design of the equipment, computer programs, and facilities 
so to achieve safe, reliable, and effective performance by operator, 
maintenance and control personnel, and to optimize personnel skill 
requirements and training time. 

3.4 Documentation 

Documentation required for reviews and audits shall be provided in 
accordance with MIL-STO-1521 (USAF). 

3.5 Logistics 

The Logistics Disciplines of DoD Directive 3100.35G shall be 
integrated into the design and engineering constraints.  Such 
integration shall include provisions for logistics support for the 
system's life cycle. 

Maintenance, Supply Support, Support Equipment and Facilities are 
normally per the individual Equipment Specifications. 

3.o  Personnel and Training 

The communications processor system shall be designed to be 
maintainable by Air Force skill level 5 personnel after completion of 
formal training course (s). 

3.o.l  Training 

Formal training requirements will include training equipment 
requirements.  This formal training includes tneory and hands-on 
equipment training. 

3.7  Major Component Characteristics 

The secure communications system is composed of a 3PM and commercially 
available components (3.1.3).  The properties of the SPM are 
delineated in 3.1 and 3.2.  The commercially available components will 
have features normally considered necessary in the area of 
application.  This paragraph lists the properties of the commercial 
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units required by their interconnection with the 5PM in a secure 
system. 

3.7.1 SPM 

Properties as specified in this document. 

3.7.2 Processor 

The processor when used in conjunction with the SPM shall implement 
the following functions: 

1) Call/Return; 

2) Clear Fast Access Store; 

3) In#terprocessor Signal; 

4) Dispatch; and 

5) Argument validation. 

The processor and SPM shall provide sufficient mechanism so that the 
following instructions may oe restricted to the most privileged domain 
of execution (ring zero): 

1) Clear Fast Access Store; 

2) Interprocessor Signal; 

3) Dispatch; 

4) instructions which control the setting of trap and interrupt 
vectors as well as the recognition and control of traps and 
interrupts; 

5) instructions which control the state of the SPM (except for 
Call/Return); 

o) instructions which may change microcode either within a processor 
or device; and 

7) any function which influence the SPM's interpretation of the 
descriptor structure defined by the security kernel. 
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The processor shall deliver all memory addresses identified as 
addresses to the 5PM.  When addresses are generated by the hardware in 
response to special corditions (traps and interrupts), the special 
nature of the addresses shall be signalled to the SPtf.  If the 
explicit-names structure is implemented (3.1.2.3.1.1), the I/O name 
shall be delivered to the SPM identified as an I/O name. 

The processor shall deliver all information concerning its internal 
state to the SPM necessary to implement the functions of this 
specification.  It shall at least signal: 

1) Order initiation; 

2) Occurrence of trap or interrupt condition; 

3) I/O initiation for explicit names; 

4) Mode of access (read, write, execute, call, return); and 

5) SPM control instructions. 

The processor shall be capab'le of being controlled from the SPM.  The 
SPM shall be able to generate processor traps. 

The processor shall be capable of being restarted after a trap (ref. 
section 3.1.2.1.b.2) . 

The processor shall provide an indivisible Test-Read-Alter-Rewrite 
memory instruction so that software may cooperate harmoniously in 
multiprocessor systems. 

3.7.3 Memory 

Memory suosystems shall have the capability to implement indivisible 
wead-Alter-Rewrite functions that can be used by the software as a 
nonambiguous semaphore mechanism. 

3.7.4 Controllers 

If the mapped I/O is implemented (3.1.2.3.1), a controller shall 
present to the SPM the identification of a device requesting transfer. 
A controller shall provide storage for each of the devices it controls 
so that any interdevice (and hence potentially interprocess) 
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interference is discernable only in the time domain. 
3.8  Precedence 

This document takes precedence over all documents in section 2.0 when 
a specific conflict in specification arises. 
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4.u  Quality Assurance Provisions 

4.1 General 

Requirements for formal tests/verifications of the secure 
communications processor performance, design characteristics and 
operability shall be per the individual specification. 
Tests/verifications will include design evaluation and operational 
capability verification. 

4.1.1 Kesponsibility for Tests 

Unless otherwise specified, the contractor is responsible for 
verifying that all specifications requirements have oeen satisfied. 
Tne contractor may utilize his own or other facilities acceptable to 
the government.  The procuring agency will monitor tne contractor's 
effort and reserves the right to perform any of tne verifications set 
forth in the specification.  The Government also reserves the eight to 
designate special existing Government facilities for the performance 
of specialized tests such as TEMPEST and/or nuclear environmental 
testing. 

4.1.2 Special Tests 

A. Reliability Demonstration. Reliability demonstration shall be per 
the individual specification. 

6.   Probabilistic Measure of Security Compromise.  Collection, 
recording and analysis of all failure data during testing shall 
oe performed.  Tests or analyses should establish to a high 
degree of statistical confidence that the specified probabilistic 
measure of security compromise is satisfied. 

C. Security Features.  The contractor shall rigorously demonstrate 
that all security features of each secure data communications 
processor are functionally correct. 

D. Qualification Tests.  Per individual specification. 

4.2 Quality Conformance 

The contractor shall perform the following inspections, analyses and 
tests to verify the requirements of Section 3 of this specification. 
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4.2.1 Interface Definitions 

The contractor shall test and demonstrate the performance of the 
dedicated communication lines, electrical interfaces and logical 
protocols.  The contractor shall also demonstrate the standard 
peripheral interfaces. 

4.2.2 Throughput 

The contractor shall demonstrate that the security controls do not 
degrade throughput oy  greater than 25%. 

4.2.3 Physical Characteristics 

The contractor shall verify by analysis or tests the following 
physical characteristics. 

A. weight limitations 

B. Cooling requirements 

C. Maintainability requirements 

4.2.4 Environmental Conditions 

Each production unit shall be subjected to the following environmental 
acceptance test per the individual specification. 

A. Temperature 

3. Humidity 

C. Vibration 

D. Shock 

E. Nuclear environment 

F. Electromagnetic compatibility 

G. TErfPEST 

b6 



5.U ^reparation for Delivery 

The secure communications processor shall be delivered as an 
integrated unit after appropriate testing in accordance with 4.U. 
When used as the front end to a host processor, it will be delivered 
in an integrated system with the host processor. 
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o.U Notes 

o.l  Descriptor Format and Field Encoding 

The formats given for descriptors, and other constructs, are logical 
ones, intended to identify required information.  A specific 
implementation of this specification may rearrange and reorganize 
these formats as long as pertinent information is preserved.  For 
instance, the A field of a descriptor may be encoded into marginally 
useful encodings of the permissions field.  One such permission is 
(R • OFF) and (i£ = ON) and (W = Ow) .  A second instance of an 
alternative encoding is the MT field of an I/O descriptor.  This field 
may be encoded into the T field yielding distinct descriptor types for 
premapped and mapped I/O devices. 

6.2  Virtual Device Addresses 

In section 3.1.2.3.2 an option was discussed that uses one descriptor 
tree for both I/O and memory descriptors.  If such an option is 
implemented, tnere must be a well defined mapping between virtual I/O 
device names and generalized virtual addresses so that the descriptor' 
for a specific I/O device can be located in the descriptor tree. 
Since the size of virtual device addresses (for the explicit I/O 
naming structure) is often much smaller than the size of virtual 
memory addresses, the secure data communications processor 
(particularly the 3PM) shall perform appropriate transformations of 
the virtual device address so that the device address may be 
interpreted in the same name space as virtual memory addresses.  For 
example, assume virtual memory addresses are lo bits wide, structured 
as 2**o segments of 2**b pages of 2**6 words, and that the virtual 
device address is 6 bits wide.  One transformation (ref. Figure lu) 
assumes one segment per device and forms a new virtual address by 
concatenating 12 low-order zeroes to the original device name.  A 
second method (ref. Figure 11), more conservative of virtual address 
space, assumes the o4th segment (e.g., segment number 63) is composed 
of "pages", each page descriptor being a direct device descriptor. 
For this case the new virtual device address may be formed oy 
concatenating 6 high-order ones and 6 low-order zeroes to the original 
device name. 

The device name transformation algorithm for a specific implementation 
is determined by the following factors: 

1) the size of the virtual memory address; 

2) the size of the virtual device address; 
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3) the intended organization of the descriptor tree (interpretation 
of virtual addresses); and 

the intended placement of devices in the virtual address space. 
For example, devices may be placed either as segments or pages 
(see above discussion). 

o.3  Virtual Address Pointers 

It is highly desiraQle that tne secure data communications processor 
support a general form of virtual address pointer.  A logical format 
is diagrammed in Figure 15.  It is intended that this pointer replace, 
in function, indirect address constructs in memory (and in processor 
address registers, if possiole).  The interpretation of the fields 
snail be: 

Virtual address: The VA field provides a virtual indirect address 
of whatever size and precision supported by the processor.  The 
specific use of this field in effective address formation is, of 
course, processor specific. 

Validation ring: The VR field provides a software defined ring 
number at which the address provided in the VA field snould oe 
evaluated.  The Vk field should be of sufficient size and 
precision to accomodate any ring number defined by the system. 
Before the VA field is used as an address by the processor, the 
SPM's rteff must be updated to max(Keff,VR,Rl) where Rl is taken 
from the descriptor controlling access to the resource in which 
the pointer is contained. 

Directed trap: The L)T field provides a software defined mechanism 
for causing hardware traps on access (as a oointer) to a virtual 
address pointer.  The DT  fiela shall have at least two values (On" 
and OFF): if ON a processor trap is generated before the VA is 
used as an address, if OFF the indirect operations proceeds as 
specified above. 

In conjunction containing providing virtual address pointers 
containing ring numbers, it would be useful if hardware supported a 
special set of pointer copying instructions (or pointer load 
instructions).  A pointer copy instruction would copy the pointer, 
replacing the VR field of the pointer with the maximum of Reff and the 
previous value of the VR field in the pointer.  Thus, whenever an 
inner ring procedure copies a pointer from a segment in an outer ring 
to the inner ring, the effective ring of all references made through 
tnat pointer will never be less than the ring in which the pointer was 
originally located.  Without a pointer copying instruction, software 
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in the inner ring must check the validity (ring number) of the VR 
field of any copied pointer to make sure that the value of VK is never 
less than the ring from which the pointer was copied. 

6.4  Process/£vent Reporting 

Operation complete events should be directed to tne crocess initiating 
the operation.  Security kernels reguire soonis ticated process 
structures.  Emoedding tne mecnanism for reporting external events in 
a well-defined manner directly to the process requires the following 
capaoilities of both the processor and SPA: 

1) both processor and SPA  must understand the concept of process and 
all attributes associated with a process: the processor (with 
SPA)   must be capable cf performing a sophisticated dispatch 
algorithm; 

2) the hardware must provide support for arbitrary scheduling 
algorithms;  and 

3) the hardware must provide sophisticated primitives for process 
cooperation (PV primitives, monitors, or their equivalent). 

Conceptually the 3PH could be designed to include this functionality. 
Such functionality would Oe impacted in a major way by software design 
considerations.  Insufficient understanding of these implications 
precludes the requirement of this functionality in tne 5PM for a 
secure system. 

within the constraints of a particular application or software 
environment, the implementation of a direct event/process reporting 
mechanism in the SPM would ce nighly desiraole. 

/o.b  Simple Indirect Descriptor 

The semantics of the indirect descriptor (ref. section 3.1.2.1.1, 
Address Translation) specifies that these descriptors point to an 
array of lower level descriptors.  An important special case is tne 
simple indirect descriptor: a descriptor that points to a single lower 
level descriptor.  The location field of this descriptor type gives 
the physical memory address of the lower level descriptor and the 
limit field may be ignored.  Wo information from the fields in the 
virtual address are needed to locate the next level descriptor once 
the simple indirect descriptor is found. 
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This construct is very useful in to support sharing the construction 
of segmented, unpaged virtual memory systems.  Such a memory structure 
is diagrammed in Figure lb. 

A secure data communications processor, satisfying this specification, 
need not implement a simple indirect descriptor construct.  However, 
its presence increases the range of application of a particular SPM 
imo1ernentation. 

6.0  Page Descriptors 

In the full three-level descriptor structure illustrated in Figure 4, 
the access control information is almost always placed in the segment 
descriptors.  This access control information includes the ring 
orackets, mode fields, call limiter, and limit field.  (The limit 
field is included in this sense because the segment descriptor can 
specify, to the resolution of one page, the size of the segment.  The 
simplest memory management scheme would not attempt to further 
subdivide memory.)  The only remaining information in a page 
descriptor that actually needs to be there and cannot be inferred by, 
the SPM is the physical address and directed trap (DT) field.  If, in 
a given implementation, it is known that a structure such as that in 
Figure 4 will be the only structure used, the actual size of the page 
descriptor can be much smaller than that of the segment descriptor. 
Since there must be at least one page descriptor for every page of 
physical memory (and most likely one page descriptor with DT field set 
for every page of every active segment not in physical memory) the 
page descriptors usually use up a great deal of physical memory.  A 
significant improvement in performance may be realized if the size of 
page descriptors can be reduced, for examole, from 4 to 2 words of 
real memory.  There may also be an impact on performance due to fewer 
accesses to memory for page descriptors. 

Another method for reducing the size of page descriptors, that would 
work in a more general structure, would be to include a field in the 
first word of the descriptor that specifies whether that descriptor is 
"short" or "long".  The simplest hardware implementation of this 
scheme might be to define a descriptor structure such that the 
physical address, directed trap, and short/long indicator were packed 
in the first one or two words, with the additional information in 
subsequent words.  By examining the first word fetched, the SPH would 
know the descriptor format and either inhibit or simply ignore 
subsequent word fetches. 
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6.7  Physical Address Size and Precision 

Each descriptor that describes a construct located in memory shall 
have sufficient size and precision in its location and limit fields so 
that the construct may be addressed anywhere in physical memory 
without waste of memory space.  While memory space waste is the 
responsibility of hardware, the hardware structure shall not preclude 
efficient space management by software.  A soecific implementation 
must trade off software flexibility against 3PM cost.  In this case, 
SPM cost may be measured with respect to descriptor size.  The most 
flexible SPM implementation provides location and limit resolution to 
tne word or oyte. 

While specific requirements are implementation specific, bounds can be 
placed on location size and precision requirements. 

Precision: A descriptor need not address memory with greater 
precision than the size of the smallest allocatable element: in 
most implementations this element will be a descriptor.  It shall 
at least have a precision sufficient to precisely address and 
limit the minimum of: the smallest array of descriptors, the 
smallest area of allocatable memory, or the s'mallest set of 
device registers for the devices in memory I/O naming structure 
(if applicable).  The precision of a descriptor may vary with its 
level of interpretation.  For example, direct memory descriptors 
at the segment and page levels of interpretation may have 
differing precision.  This may be accomplished, using a fixed 
descriptor format, by allowing the significance of the location 
and limit fields to be a function of the level of interpretation 
or additional encodings of the type field. 

Size: Each location field shall be capable of addressing all of 
physical memory at the precision of the descriptor.  For example, 
if the precision of the descriptor is the size of a descriptor 
(several bytes) then the location field shall have sufficient 
size to address all of memory in increments of its precision: the 
size of a descriptor.  Each limit field shall have sufficient 
size to delimit tne largest addressable construct at the 
precision of the descriptor.  Using the above example, if the 
precision of the descriptor is the size of a descriptor, then the 
limit field shall have sufficient size to delimit the largest 
construct addressable from the descriptor (for instance, a page) 
modulo the size of a descriptor. 
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fa.b  SPM Algorithmic Description 

A sample flowchart detailing the address translation and access 
control functions of the SPM is shown in Figure 17.  This flowchart is 
not intended to define the implementation, but rather to present an 
algorithm that approximates the functionality of the SPH.  The 
flowcnart is constructed as a procedure named RCF that is called by 
the CPU or I/O device on each memory reference.  The arguments to REF, 
appearing at the top of the flowchart, have the following meaning: 

VADDR - the virtual address of the memory reference. 

MODE - one of the five values: Read, Execute, write, Call, 
Return.  The MODE argument specifies the type of permission 
required.  If TYPE (see below) is I/O, the MODE is either 
Read or write. 

DATA - either an input argument, in which case this is data to be 
written into memory at the virtual address VADDR, or an 
output argument, in which case the contents of the memory 
location read is returned here. 

RESET - can be U or have the value RESET or IHD.      If RESET, the 
SPM is instructed to reset Reff to the value 

1 a t: 
Dry 

sqi 
If IND, the reference is a fetch of an 

indirect address (virtual address pointer) by the CPU.  This 
value instructs the 3PM to examine the DT and VR fields of 
the virtual address pointer in determining whether a trap 
snould be generated or whether to update Reff. 

DEVICE - identifies the active module requesting the reference. 
It is either the value CPU, indicating the processor is 
requesting the reference, or an I/O device number. 

TYPE - is either I/O, indicating that the reference is to an I/O 
device and the instruction being executed is an I/O 
instruction, or MEMORY, indicating that the reference is to 
memory. 

In order to implement the algorithm in the flowchart, several internal 
registers for storage of permanent and temporary values have been 
created.  These are illustrated in Figure 18 and are defined as 
follows: 
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CALLING  SEQUENCE: REFtVADDR,   MODE, DATA, RESET, DEVICE, TYPE) 

VADOR  =    VIRTUAL    ADDRESS   TO  REFERENCE 

MODE     =     READ, EXECUTE , WRiTE , CALL, OS   RETURN VAODR 

DATA     =     DATA    TO   BE   REAO   OR   WRITTEN 

RESET   ••     IF   "RESET",    RESET    Reff   .   IF   "iNO", 

THIS   IS    INDIRECT    FETCH. '    DATA 

DEVICE:  "CPU"  OR    I/O   DEVICE   NUMBER  (REQUESTER) 

TYPE.     -   "l/c"   OR   "MEMORY"   (OBJECT) 

a b c              d 
j 

-—• SEGNO—— -— OFFSET— 

VR DT VA 

A .   0 

<^    RE3E' ?     *y 
YES 

Rlug   TA3LE 'DEVICE). Rcjr -»-RiNG TABLE ( CEviCE j.Re 

i^l VAODR. SEGNO -*|V£S /0EV1CE;..CPU..5V 

I I£S 1 ^ rr^—/ 

DBR    TABLE ( DEV.CE! — TDBR 
RING   TABLE ( DEVICE! Rcur-»-TRcur  j 

RING   TABLE ( DEVICE) Reff-^-TReM   J 

VACDR.  o  -*-OFFSE"l 
" b"-*-NEXT 

G- 

YES 
-/TQBft. T:   "INDIRECT^  ,ACDR    SCGNOHM)FFSE" 

"C" ••NEXT 

TDBR. L —+. DESC |_ 
TDBR PA 

i 

oesc PA 

a ESCL >    OFFSET   7 
V»c 

1 YES 

•RAP — OUT OF BOUNDS 

ON DESCRIPTOR 

M ( DESC. PA + OFFSET )—»-GESC 

X 
<^DESCTDTTV 

TRAP - DIRECTED 

TR-AP#   DT 

<^DESC. A ?^>— *00 
OFF 

d> 
Figure 17.  SPM Flowchart 
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„       •        \ YES 
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NO 
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< VADDR.OFFSET <   DESC.CL  ? 
YE! 

NO 
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T
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'ES 

'EXECUTE 
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yES 

NO 
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INC 

* 
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RETURN 
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Figure 17.  SPM Flowchart (Continued) 
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Figure 17.  SPM Flowchart (Concluded) 
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RCF   (PPOOtUS   COUNTER ."EXECUTE," INSTRJCPON, "RESET" "CPU ",   "MEMORY") 
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Figure 19.  Typical Instruction Loop 
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ADDA  -   temporary register in which a physical memory address is 
saved. 

OFFSET - temporary register in which an offset into a page or 
descriptor table is saved. 

A - a flag that is set to TRUE when a descriptor has been 
encountered witn its A field set.  If, after' the final 
descriptor fetch, this flag is still FALSE, a trap will oe 
genera ted. 

T1J3R - a register, structured li<e the-DBR, in which to 
temporarily "store the current Di3r< that applies to the 
reference.  See Figure 7 for a description of the internal 
fields. 

TReff, TRcur - temporary holding registers for the value of Rcur 
and Reff used in this reference. 

NEXT - has the value "o", "c", or "a",, indicating which portion 
of V'AJLK is to be used as the next offset into a descriptor 

. taole or page. 

TPC - temporary storage for the segment number in which the 
current instruction resides.  This value is loaded with 
VADDR.SEGNO at each RESET.  Any subsequent read from memory 
(until the next RESET) is allowed from this segment even 
though there may be no explicit read permission. 

biiR TABLE - is a table containing one OBR  value for the CPU and 
each device currently active.  This table may or may not ' 
have a physical realization as memory internal to the SPH. 
A new OSR is loaded into this table when an I/O operation is 
initiated on a device. 

RltiG  TABLE - is a table corresponding to the DE>R  table that 
contains the values of Reff and Rcur for the CPU and for 
each active device.  The values of Reff must be saved, in 
addition to Rcur, because different devices may access 
memory between requests to reset Reff for any one device. 

DESC - is internal storage for a descriptor that has been fetched 
from memory.  The internal fields are described in Figure o 
and Figure 12. 

The algorithm represented by the flowchart makes the following 
assumptions: 
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I/O is mapped (see 3.1.2.2.1.2). 

The same descriptor tree is used for both I/O descriptors and 
memory descriptors {see 3.1.2.3.2). 

The Explicit names structure is used for I/O (see 3.1.2.3.1.1) 

Indirect addresses (virtual address pointers) contain ring number 
and directed trap fields (see 3.1.2.1.2.2 and 6.3). 

The algorithm is not reentrant.  This means that the SPM is not 
interrupted by a request for another memory reference until uOwE 
has been reached. 

The intended use of REF by the processor in a typical instruction 
cycle is illustrated in Figure ly.  This figure is only meant to be 
illustrative and does not restrict the implementation.  An actual 
processor instruction cycle may be somewhat different in the placement 
of various tests and computations.  Each call to REF in this figure 
represents either a memory reference or an I/O device reference.  Note 
that the algorithm defining REF keeps track of Reff for each active 
device.  This allows an I/O device access to memory at any time 
between successive calls to REF in Figure 19. 

o.y  Switchable Field Widths 

In 3.1.2.1.1 on address translation the requirement was stated that 
the breakdown of the virtual address into four fields a,b,c,d be 
carefully chosen to be optimal for the intended application.  Since it 
may be undesirable to construct hardware best suited for only one 
application, an optional implementation can allow for more than one 
specific breakdown of the virtual address into four fields.  For 
example  the optimal segment size for one application may be 204b 
words, whereas the most useful segment size for another application 
may be 126 words.  The change from one interpretation of virtual 
address to another can be implemented through the use of switches or 
jumpers, or more dynamically in software through the setting of 
certain modes in the SPM or use of special fields in the descriptors 
or DBR.  In general, only a small number (two or three) choices"of 
virtual address breakdown need be available to handle all foreseeable 
applications. 

o.lQ  Stack Base Register 

In 3.1.2.1.6.1 the call order was discussed, with some references to 
its use.  Normally, non-gate procedures with an execute bracket of 
more tnan one ring (i.e., Rl ?  R2 and R2 = R3) must be structured so 
that they will execute properly in any of the rings from which they 
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are entered.  Since, in a multi-ring environment there must be a 
separate stack segment for each ring, tnere is a requirement that such 
procedures must ootain the address of the stack segment before 
beginning execution.  This requirement is easily satisfied in software 
by defining a standardized calling sequence that provides the stack 
segment number in some register.  The called procedure can safely 
believe that this register truly points to the proper stack seament 
oecause the caller, who provided the value, is running in the same 
ring as the called procedure. 

If the procedure is a gate, and it is called from above R2, then the 
value of such a stack segment number cannot oe believed because tne 
caller was running in a higner ring and might try to spoof the gate 
procedure into using the wrong stack.  However, the stack number is 
not really required in this case because the called procedure can 
assume that it is always executing at K2 when entered at its gate 
entry.  (There is an assumption that kl = R2 or that, by convention, 
software does not enter a gate procedure unless the current ring is K2 
or greater.)  Generally, when the current ring is known, tne stack 
segment number can easily be determined*by convention (e.g., tne stack 
segment number for ring L>i is N) . 

A problem arises, though, when programming generality dictates that a 
gate procedure be programmed indeoendent of the ring in which it is to 
be run.  Another requirement for generality may be that a gate 
procedure be entered at the same iocation, via the call order, from 
any ring between Rl and R3.  In order for such a procedure to find its 
stack, it must first determine from which ring it was called.  If it 
was called from within its execute bracket, a register can be 
believed.  If it was called from above R2, the stack is that for R2. 
The difficulty here is that computation of the stack address must take 
place on every call, and must not require use of temporary storage 
(i.e., the stack).  Also, the fact that the value of the stack address 
tor R2 must be programmed into the procedure makes the procedure 
dependent on the virtual address of a given segment.  Moreover, it is 
difficult, when writing in a higher level language, to require that 
the intended ring of execution be specified to the compiler. 

The problem is easily solved through the use of a simple SPM feature. 
Upon request, or perhaps automatically at every call, the SPM would 
create a virtual address pointer to the stack by using the current 
ring number as the segment number (or by some similar simple 
transformation), and load that pointer into a register through which 
software can indirect.  In such a structure, all procedures could 
assume, for example, tnat a given register always points to the base 
of the stack for the current ring, regardless of which ring they were 
entered from. 
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A more general variant cf this feature, required for multiple 
execution points within a process, is an SPM-rnaintained stack base 
register.  Instead of simply using the current ring number to find the 
stack, the stack base register provides the base address of a set of 
stack segments.  The current ring number is added to (or concatenated 
with) the stack base register to find the right stack segment.  The 
stack base register itself is set by the kernel and is a function of 
which of several execution points for the current process is being 
invoked. 

b.ll  Ring Alarm Register 

In a multi-ring environment each ring has a set of asynchronous 
interrupts that it has set up, such as timers or external devices. 
The interrupt vector, and the interrupts themselves, are all handled 
by the kernel.  However, if the interrupt is one that is of interest 
to the outer ring, the kernel must invoke the appropriate outer ring 
interrupt handler.  This is no problem if the interrupt occurs while 
the process is executing in that outer ring, since in that case the 
kernel can simply invoke the proper procedure and save the state 
information so that the outer ring will appear to have been 
asynchronously interrupted. 

If the interrupt occurs wnile the process is executing in the kernel 
ring, particularly while in some kernel procedure that may not be 
interrupted arbitrarily, the actual interrupt must be deferred until 
the kernel is finished and ready to return to the outer ring.  An 
unsatisfactory solution would be to defer interrupts while in the 
kernel using the hardware interrupt inhibit feature.  (Hardware 
interrupt inhibit should only be used in parts of kernel interrupt 
Handlers ana other critical kernel code.)  The software solution is to 
rememoer that the interrupt occurred, and then, just ber'ore returning 
to the outer ring, check if any interrupt handlers should be invoked. 
This procedure makes kernel calls indivisible from the outer ring's 
point of view. 
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10.0  Appendix 

lu.l  Interconnection Unit 

10.1.1  Intersystem Geometry 

The connection of the secure communications processor to a host 
processor througn an Interconnection Unit (IU) is shown in Figure 20. 
On the communications processor side the IU is addressaole as absolute 
memory and as a I/O device,  when addressed as absolute memory it may 
ce the source or sink for data flow from an I/O device.  Where 
addressed as an I/O device, it may be set to various operating modes 
by the secure communications processor.  If it is deemed necessary in 
a particular application, the range of absolute addresses assigned to 
the IU may be subdivided, and a connection path to the host processor 
implemented for each subdivision.  Each such subdivision would be 
required to respond to its own I/O name. 

lu.l.2  Internal ueometry 

A functional diagram of a connection path in the IU is shown in Figure 
21.  This diagram is not intended to constrain the implementation of 
an IU.  The format adapter is intended to match the formats of the 
secure communications system and the host system.  The storage element 
would contain state or mode information provided by the secure 
communication processor, and any addresses required for interaction 
with the host processor.  The address response logic must respond to 
the assigned range of absolute addresses and the appropriate I/O name. 

lu.l.3  Inter processor Communication 

The IU shall extend the interprocessor signal function of the secure 
data communications processor to include the capability for 
interprocessor interrupts between the host processor and a secure data 
communications processor. 

To facilitate the transference of information betv/een the secure 
communications processor and the host processor, the IU will be able 
to be set so that all of host processor memory addresses can be 
accessed by the secure communications processor.  In addition, all 
information bits in a host processor memory unit shall be accessible 
from the secure data communications processor. 
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Figure  20.       IU Function 
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Figure  21.     IU  Intersystem Geometry 
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